Showing 1 - 3 of 3 Research Library Publications
Posted: | Thai Ong, Becky Krumm, Margaret Wells, Susan Read, Linda Harris, Andrea Altomare, Miguel Paniagua

Academic Medicine: Volume 99 - Issue 7 - Pages 778-783

 

This study examined score comparability between in-person and remote proctored administrations of the 2020 Internal Medicine In-Training Examination (IM-ITE) during the COVID-19 pandemic. Analysis of data from 27,115 IM residents revealed statistically significant but educationally nonsignificant differences in predicted scores, with slightly larger variations observed for first-year residents. Overall, performance did not substantially differ between the two testing modalities, supporting the continued use of remote proctoring for the IM-ITE amidst pandemic-related disruptions.

Posted: | Daniel Jurich, Chunyan Liu

Applied Measurement Education: Volume 36, Issue 4, Pages 326-339

 

This study examines strategies for detecting parameter drift in small-sample equating, crucial for maintaining score comparability in high-stakes exams. Results suggest that methods like mINFIT, mOUTFIT, and Robust-z effectively mitigate drifting anchor items' effects, while caution is advised with the Logit Difference approach. Recommendations are provided for practitioners to manage item parameter drift in small-sample settings.
 

Posted: | J. Salt, P. Harik, M. A. Barone

Academic Medicine: March 2019 - Volume 94 - Issue 3 - p 314-316

 

The United States Medical Licensing Examination Step 2 Clinical Skills (CS) exam uses physician raters to evaluate patient notes written by examinees. In this Invited Commentary, the authors describe the ways in which the Step 2 CS exam could benefit from adopting a computer-assisted scoring approach that combines physician raters’ judgments with computer-generated scores based on natural language processing (NLP).