
RESEARCH LIBRARY
RESEARCH LIBRARY
View the latest publications from members of the NBME research team
Advancing Natural Language Processing in Educational Assessment
This book examines the use of natural language technology in educational testing, measurement, and assessment. Recent developments in natural language processing (NLP) have enabled large-scale educational applications, though scholars and professionals may lack a shared understanding of the strengths and limitations of NLP in assessment as well as the challenges that testing organizations face in implementation. This first-of-its-kind book provides evidence-based practices for the use of NLP-based approaches to automated text and speech scoring, language proficiency assessment, technology-assisted item generation, gamification, learner feedback, and beyond.
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies - p 2880–2886
This paper presents a corpus of 43,985 clinical patient notes (PNs) written by 35,156 examinees during the high-stakes USMLE® Step 2 Clinical Skills examination.
Educational Measurement: Issues and Practice
This short, invited manuscript focuses on the implications for certification and licensure assessment organizations as a result of the wide‐spread disruptions caused by the COVID-19 pandemic.
Integrating Timing Considerations to Improve Testing Practices
This book synthesizes a wealth of theory and research on time issues in assessment into actionable advice for test development, administration, and scoring.
Integrating Timing Considerations to Improve Testing Practices
This chapter presents a historical overview of the testing literature that exemplifies the theoretical and operational evolution of test speededness.
Educational Measurement: Issues and Practice, 39: 30-36
This article proposes the conscious weight method and subconscious weight method to bring more objectivity to the standard setting process. To do this, these methods quantify the relative harm of the negative consequences of false positive and false negative misclassification.
Academic Medicine: July 2019 - Volume 94 - Issue 7 - p 926-927
A response to concerns regarding potential bias in the implementation of machine learning (ML) to scoring of the United States Medical Licensing Examination Step 2 Clinical Skills (CS) patient notes (PN).