
RESEARCH LIBRARY
RESEARCH LIBRARY
View the latest publications from members of the NBME research team
Proceedings of the 18th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2023), Pages 443-447
This paper presents the ACTA system, which performs automated short-answer grading in the domain of high-stakes medical exams. The system builds upon previous work on neural similarity-based grading approaches by applying these to the medical domain and utilizing contrastive learning as a means to optimize the similarity metric.
Advancing Natural Language Processing in Educational Assessment: Pages 167-182
This chapter discusses the evolution of natural language processing (NLP) approaches to text representation and how different ways of representing text can be utilized for a relatively understudied task in educational assessment – that of predicting item characteristics from item text.
Advancing Natural Language Processing in Educational Assessment: Pages 58-73
This chapter describes INCITE, an NLP-based system for scoring free-text responses. It emphasizes the importance of context and the system’s intended use and explains how each component of the system contributed to its accuracy.
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies - p 2880–2886
This paper presents a corpus of 43,985 clinical patient notes (PNs) written by 35,156 examinees during the high-stakes USMLE® Step 2 Clinical Skills examination.
Handbook of Automated Scoring
In this chapter we describe the historical background that led to development of the simulations and the subsequent refinement of the construct that occurred as the interface was being developed. We then describe the evolution of the automated scoring procedures from linear regression modeling to rule-based procedures.
Academic Medicine: July 2019 - Volume 94 - Issue 7 - p 926-927
A response to concerns regarding potential bias in the implementation of machine learning (ML) to scoring of the United States Medical Licensing Examination Step 2 Clinical Skills (CS) patient notes (PN).