Showing 1 - 4 of 4 Research Library Publications
Posted: | Daniel Jurich, Chunyan Liu

Applied Measurement Education: Volume 36, Issue 4, Pages 326-339

 

This study examines strategies for detecting parameter drift in small-sample equating, crucial for maintaining score comparability in high-stakes exams. Results suggest that methods like mINFIT, mOUTFIT, and Robust-z effectively mitigate drifting anchor items' effects, while caution is advised with the Logit Difference approach. Recommendations are provided for practitioners to manage item parameter drift in small-sample settings.
 

Posted: | Victoria Yaneva (editor), Matthias von Davier (editor)

Advancing Natural Language Processing in Educational Assessment

 

This book examines the use of natural language technology in educational testing, measurement, and assessment. Recent developments in natural language processing (NLP) have enabled large-scale educational applications, though scholars and professionals may lack a shared understanding of the strengths and limitations of NLP in assessment as well as the challenges that testing organizations face in implementation. This first-of-its-kind book provides evidence-based practices for the use of NLP-based approaches to automated text and speech scoring, language proficiency assessment, technology-assisted item generation, gamification, learner feedback, and beyond.

Posted: | Victoria Yaneva, Peter Baldwin, Le An Ha, Christopher Runyon

Advancing Natural Language Processing in Educational Assessment: Pages 167-182

 

This chapter discusses the evolution of natural language processing (NLP) approaches to text representation and how different ways of representing text can be utilized for a relatively understudied task in educational assessment – that of predicting item characteristics from item text.

Posted: | Polina Harik, Janet Mee, Christopher Runyon, Brian E. Clauser

Advancing Natural Language Processing in Educational Assessment: Pages 58-73

 

This chapter describes INCITE, an NLP-based system for scoring free-text responses. It emphasizes the importance of context and the system’s intended use and explains how each component of the system contributed to its accuracy.