
RESEARCH LIBRARY
RESEARCH LIBRARY
View the latest publications from members of the NBME research team
Advancing Natural Language Processing in Educational Assessment
This book examines the use of natural language technology in educational testing, measurement, and assessment. Recent developments in natural language processing (NLP) have enabled large-scale educational applications, though scholars and professionals may lack a shared understanding of the strengths and limitations of NLP in assessment as well as the challenges that testing organizations face in implementation. This first-of-its-kind book provides evidence-based practices for the use of NLP-based approaches to automated text and speech scoring, language proficiency assessment, technology-assisted item generation, gamification, learner feedback, and beyond.
Medical Teacher: Volume 45 - Issue 6, Pages 565-573
This guide aims aim to describe practical considerations involved in reading and conducting studies in medical education using Artificial Intelligence (AI), define basic terminology and identify which medical education problems and data are ideally-suited for using AI.
Teaching and Learning in Medicine: Volume 33 - Issue 4 - p 366-381
The purpose of this analysis is to describe these sources of evidence that can be used to evaluate the quality of generated items. The important role of medical expertise in the development and evaluation of the generated items is highlighted as a crucial requirement for producing validation evidence.
Journal of Applied Technology: Volume 23 - Special Issue 1 - Pages 30-40
The interpretations of test scores in secure, high-stakes environments are dependent on several assumptions, one of which is that examinee responses to items are independent and no enemy items are included on the same forms. This paper documents the development and implementation of a C#-based application that uses Natural Language Processing (NLP) and Machine Learning (ML) techniques to produce prioritized predictions of item enemy statuses within a large item bank.
Advances in Health Sciences Education: Volume 25, p 1057–1086 (2020)
This critical review explores: (1) published applications of data science and ML in HPE literature and (2) the potential role of data science and ML in shifting theoretical and epistemological perspectives in HPE research and practice.
Integrating Timing Considerations to Improve Testing Practices
This chapter addresses a different aspect of the use of timing data: it provides a framework for understanding how an examinee's use of time interfaces with time limits to impact both test performance and the validity of inferences made based on test scores. It focuses primarily on examinations that are administered as part of the physician licensure process.
Adv in Health Sci Educ 24, 141–150 (2019)
Research suggests that the three-option format is optimal for multiple choice questions (MCQs). This conclusion is supported by numerous studies showing that most distractors (i.e., incorrect answers) are selected by so few examinees that they are essentially nonfunctional. However, nearly all studies have defined a distractor as nonfunctional if it is selected by fewer than 5% of examinees.