
RESEARCH LIBRARY
RESEARCH LIBRARY
View the latest publications from members of the NBME research team
Journal of Applied Technology: Volume 23 - Special Issue 1 - Pages 30-40
The interpretations of test scores in secure, high-stakes environments are dependent on several assumptions, one of which is that examinee responses to items are independent and no enemy items are included on the same forms. This paper documents the development and implementation of a C#-based application that uses Natural Language Processing (NLP) and Machine Learning (ML) techniques to produce prioritized predictions of item enemy statuses within a large item bank.
On the Cover. Educational Measurement: Issues and Practice, 38: 5-5
This informative graphic reports between‐individual information where a vertical line—with dashed lines on either side indicating an error band—spans three graphics allowing a student to easily see their score relative to four defined performance categories and, more notably, three relevant score distributions.