Showing 1 - 10 of 11 Research Library Publications
Posted: | Martin G. Tolsgaard, Martin V. Pusic, Stefanie S. Sebok-Syer, Brian Gin, Morten Bo Svendsen, Mark D. Syer, Ryan Brydges, Monica M. Cuddy, Christy K. Boscardin

Medical Teacher: Volume 45 - Issue 6, Pages 565-573

 

This guide aims aim to describe practical considerations involved in reading and conducting studies in medical education using Artificial Intelligence (AI), define basic terminology and identify which medical education problems and data are ideally-suited for using AI.

Posted: | Victoria Yaneva, Le An Ha, Sukru Eraslan, Yeliz Yesilada, Ruslan Mitkov

Neural Engineering Techniques for Autism Spectrum Disorder: Volume 2, Pages 63-79

 

Automated detection of high-functioning autism in adults is a highly challenging and understudied problem. In search of a way to automatically detect the condition, this chapter explores how eye-tracking data from reading tasks can be used.

Posted: | Erfan Khalaji, Sukru Eraslan, Yeliz Yesilada, Victoria Yaneva

Behavior & Information Technology

 

This study builds upon prior work in this area that focused on developing a machine-learning classifier trained on gaze data from web-related tasks to detect ASD in adults. Using the same data, we show that a new data pre-processing approach, combined with an exploration of the performance of different classification algorithms, leads to an increased classification accuracy compared to prior work.

Posted: | Ian Micir, Kimberly Swygert, Jean D'Angelo

Journal of Applied Technology: Volume 23 - Special Issue 1 - Pages 30-40

 

The interpretations of test scores in secure, high-stakes environments are dependent on several assumptions, one of which is that examinee responses to items are independent and no enemy items are included on the same forms. This paper documents the development and implementation of a C#-based application that uses Natural Language Processing (NLP) and Machine Learning (ML) techniques to produce prioritized predictions of item enemy statuses within a large item bank.

Posted: | Victoria Yaneva, Brian E. Clauser, Amy Morales, Miguel Paniagua

Journal of Educational Measurement: Volume 58, Issue 4, Pages 515-537

 

In this paper, the NBME team reports the results an eye-tracking study designed to evaluate how the presence of the options in multiple-choice questions impacts the way medical students responded to questions designed to evaluate clinical reasoning. Examples of the types of data that can be extracted are presented. We then discuss the implications of these results for evaluating the validity of inferences made based on the type of items used in this study.

Posted: | Martin G. Tolsgaard, Christy K. Boscardin, Yoon Soo Park, Monica M. Cuddy, Stefanie S. Sebok-Syer

Advances in Health Sciences Education: Volume 25, p 1057–1086 (2020)

 

This critical review explores: (1) published applications of data science and ML in HPE literature and (2) the potential role of data science and ML in shifting theoretical and epistemological perspectives in HPE research and practice.

Posted: | Y.S. Park, A. Morales, L. Ross, M. Paniagua

Evaluation & the Health Professions: Volume: 43 issue: 3, page(s): 149-158

 

This study examines the innovative and practical application of DCM framework to health professions educational assessments using retrospective large-scale assessment data from the basic and clinical sciences: National Board of Medical Examiners Subject Examinations in pathology (n = 2,006) and medicine (n = 2,351).

Posted: | V. Yaneva, L. A. Ha, S. Eraslan, Y. Yesilada, R. Mitkov

IEEE Transactions on Neural Systems and Rehabilitation Engineering

 

The purpose of this study is to test whether visual processing differences between adults with and without high-functioning autism captured through eye tracking can be used to detect autism.

Posted: | M. von Davier, J. H. Shin, L. Khorramdel, L. Stankov

Applied Psychological Measurement: Volume: 42 issue: 4, page(s): 291-306

 

The research presented in this article combines mathematical derivations and empirical results to investigate effects of the nonparametric anchoring vignette approach proposed by King, Murray, Salomon, and Tandon on the reliability and validity of rating data. The anchoring vignette approach aims to correct rating data for response styles to improve comparability across individuals and groups.

Posted: | Z. Jiang, M.R. Raymond

Applied Psychological Measurement: Volume: 42 issue: 8, page(s): 595-612

 

Conventional methods for evaluating the utility of subscores rely on reliability and correlation coefficients. However, correlations can overlook a notable source of variability: variation in subtest means/difficulties. Brennan introduced a reliability index for score profiles based on multivariate generalizability theory, designated as G, which is sensitive to variation in subtest difficulty. However, there has been little, if any, research evaluating the properties of this index. A series of simulation experiments, as well as analyses of real data, were conducted to investigate G under various conditions of subtest reliability, subtest correlations, and variability in subtest means.