Showing 1 - 4 of 4 Research Library Publications
Posted: | Y.S. Park, A. Morales, L. Ross, M. Paniagua

Evaluation & the Health Professions: Volume: 43 issue: 3, page(s): 149-158

 

This study examines the innovative and practical application of DCM framework to health professions educational assessments using retrospective large-scale assessment data from the basic and clinical sciences: National Board of Medical Examiners Subject Examinations in pathology (n = 2,006) and medicine (n = 2,351).

Posted: | M. von Davier, J. H. Shin, L. Khorramdel, L. Stankov

Applied Psychological Measurement: Volume: 42 issue: 4, page(s): 291-306

 

The research presented in this article combines mathematical derivations and empirical results to investigate effects of the nonparametric anchoring vignette approach proposed by King, Murray, Salomon, and Tandon on the reliability and validity of rating data. The anchoring vignette approach aims to correct rating data for response styles to improve comparability across individuals and groups.

Posted: | Z. Jiang, M.R. Raymond

Applied Psychological Measurement: Volume: 42 issue: 8, page(s): 595-612

 

Conventional methods for evaluating the utility of subscores rely on reliability and correlation coefficients. However, correlations can overlook a notable source of variability: variation in subtest means/difficulties. Brennan introduced a reliability index for score profiles based on multivariate generalizability theory, designated as G, which is sensitive to variation in subtest difficulty. However, there has been little, if any, research evaluating the properties of this index. A series of simulation experiments, as well as analyses of real data, were conducted to investigate G under various conditions of subtest reliability, subtest correlations, and variability in subtest means.

Posted: | M. C. Edwards, A. Slagle, J. D. Rubright, R. J. Wirth

Qual Life Res 27, 1711–1720 (2018)

 

The US Food and Drug Administration (FDA), as part of its regulatory mission, is charged with determining whether a clinical outcome assessment (COA) is “fit for purpose” when used in clinical trials to support drug approval and product labeling. This paper provides a review (and some commentary) on the current state of affairs in COA development/evaluation/use with a focus on one aspect: How do you know you are measuring the right thing? In the psychometric literature, this concept is referred to broadly as validity and has itself evolved over many years of research and application.