Showing 1 - 2 of 2 Research Library Publications
Posted: | Ian Micir, Kimberly Swygert, Jean D'Angelo

Journal of Applied Technology: Volume 23 - Special Issue 1 - Pages 30-40

 

The interpretations of test scores in secure, high-stakes environments are dependent on several assumptions, one of which is that examinee responses to items are independent and no enemy items are included on the same forms. This paper documents the development and implementation of a C#-based application that uses Natural Language Processing (NLP) and Machine Learning (ML) techniques to produce prioritized predictions of item enemy statuses within a large item bank.

Posted: | Le An Ha, Victoria Yaneva, Polina Harik, Ravi Pandian, Amy Morales, Brian Clauser

Proceedings of the 28th International Conference on Computational Linguistics

 

This paper brings together approaches from the fields of NLP and psychometric measurement to address the problem of predicting examinee proficiency from responses to short-answer questions (SAQs).