Showing 1 - 2 of 2 Research Library Publications
Posted: | King Yiu Suen, Victoria Yaneva, Le An Ha, Janet Mee, Yiyun Zhou, Polina Harik

Proceedings of the 18th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2023), Pages 443-447

 

This paper presents the ACTA system, which performs automated short-answer grading in the domain of high-stakes medical exams. The system builds upon previous work on neural similarity-based grading approaches by applying these to the medical domain and utilizing contrastive learning as a means to optimize the similarity metric. 

Posted: | J. D. Rubright

Educational Measurement: Issues and Practice, 37: 40-45

 

This simulation study demonstrates that the strength of item dependencies and the location of an examination systems’ cut‐points both influence the accuracy (i.e., the sensitivity and specificity) of examinee classifications. Practical implications of these results are discussed in terms of false positive and false negative classifications of test takers.