
RESEARCH LIBRARY
RESEARCH LIBRARY
View the latest publications from members of the NBME research team
Behavior & Information Technology
This study builds upon prior work in this area that focused on developing a machine-learning classifier trained on gaze data from web-related tasks to detect ASD in adults. Using the same data, we show that a new data pre-processing approach, combined with an exploration of the performance of different classification algorithms, leads to an increased classification accuracy compared to prior work.
Applied Psychological Measurement: Volume 47, issue 1, page(s) 34-47
This study used simulation to investigate the performance of the t-test method in detecting outliers and compared its performance with other outlier detection methods, including the logit difference method with 0.5 and 0.3 as the cutoff values and the robust z statistic with 2.7 as the cutoff value.
Advances in Health Sciences Education: Volume 27, p 1401–1422
After collecting eye-tracking data from 26 students responding to clinical MCQs, analysis is performed by providing 119 eye-tracking features as input for a machine-learning model aiming to classify correct and incorrect responses. The predictive power of various combinations of features within the model is evaluated to understand how different feature interactions contribute to the predictions.