Showing 1 - 5 of 5 Research Library Publications
Posted: | Victoria Yaneva (editor), Matthias von Davier (editor)

Advancing Natural Language Processing in Educational Assessment

 

This book examines the use of natural language technology in educational testing, measurement, and assessment. Recent developments in natural language processing (NLP) have enabled large-scale educational applications, though scholars and professionals may lack a shared understanding of the strengths and limitations of NLP in assessment as well as the challenges that testing organizations face in implementation. This first-of-its-kind book provides evidence-based practices for the use of NLP-based approaches to automated text and speech scoring, language proficiency assessment, technology-assisted item generation, gamification, learner feedback, and beyond.

Posted: | M.J. Margolis, R.A. Feinberg (eds)

Integrating Timing Considerations to Improve Testing Practices

 

This book synthesizes a wealth of theory and research on time issues in assessment into actionable advice for test development, administration, and scoring. 

Posted: | D. Jurich

Integrating Timing Considerations to Improve Testing Practices

 

This chapter presents a historical overview of the testing literature that exemplifies the theoretical and operational evolution of test speededness.

Posted: | B.C. Leventhal, I. Grabovsky

Educational Measurement: Issues and Practice, 39: 30-36

 

This article proposes the conscious weight method and subconscious weight method to bring more objectivity to the standard setting process. To do this, these methods quantify the relative harm of the negative consequences of false positive and false negative misclassification.

Posted: | P. Harik, B. E. Clauser, I. Grabovsky, P. Baldwin, M. Margolis, D. Bucak, M. Jodoin, W. Walsh, S. Haist

Journal of Educational Measurement: Volume 55, Issue 2, Pages 308-327

 

The widespread move to computerized test delivery has led to the development of new approaches to evaluating how examinees use testing time and to new metrics designed to provide evidence about the extent to which time limits impact performance. Much of the existing research is based on these types of observational metrics; relatively few studies use randomized experiments to evaluate the impact time limits on scores. Of those studies that do report on randomized experiments, none directly compare the experimental results to evidence from observational metrics to evaluate the extent to which these metrics are able to sensitively identify conditions in which time constraints actually impact scores. The present study provides such evidence based on data from a medical licensing examination.