Showing 1 - 3 of 3 Research Library Publications
Posted: | Victoria Yaneva, Le An Ha, Sukru Eraslan, Yeliz Yesilada, Ruslan Mitkov

Neural Engineering Techniques for Autism Spectrum Disorder: Volume 2, Pages 63-79

 

Automated detection of high-functioning autism in adults is a highly challenging and understudied problem. In search of a way to automatically detect the condition, this chapter explores how eye-tracking data from reading tasks can be used.

Posted: | Sukru Eraslan, Yeliz Yesilada, Victoria Yaneva, Simon Harper

ACM SIGACCESS Accessibility and Computing

 

In this article, we first summarise STA (Scanpath Trend Analysis) with its application in autism detection, and then discuss future directions for this research.

Posted: | P. Harik, B. E. Clauser, I. Grabovsky, P. Baldwin, M. Margolis, D. Bucak, M. Jodoin, W. Walsh, S. Haist

Journal of Educational Measurement: Volume 55, Issue 2, Pages 308-327

 

The widespread move to computerized test delivery has led to the development of new approaches to evaluating how examinees use testing time and to new metrics designed to provide evidence about the extent to which time limits impact performance. Much of the existing research is based on these types of observational metrics; relatively few studies use randomized experiments to evaluate the impact time limits on scores. Of those studies that do report on randomized experiments, none directly compare the experimental results to evidence from observational metrics to evaluate the extent to which these metrics are able to sensitively identify conditions in which time constraints actually impact scores. The present study provides such evidence based on data from a medical licensing examination.