Showing 1 - 8 of 8 Research Library Publications
Posted: | King Yiu Suen, Victoria Yaneva, Le An Ha, Janet Mee, Yiyun Zhou, Polina Harik

Proceedings of the 18th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2023), Pages 443-447

 

This paper presents the ACTA system, which performs automated short-answer grading in the domain of high-stakes medical exams. The system builds upon previous work on neural similarity-based grading approaches by applying these to the medical domain and utilizing contrastive learning as a means to optimize the similarity metric. 

Posted: | Victoria Yaneva, Peter Baldwin, Le An Ha, Christopher Runyon

Advancing Natural Language Processing in Educational Assessment: Pages 167-182

 

This chapter discusses the evolution of natural language processing (NLP) approaches to text representation and how different ways of representing text can be utilized for a relatively understudied task in educational assessment – that of predicting item characteristics from item text.

Posted: | Polina Harik, Janet Mee, Christopher Runyon, Brian E. Clauser

Advancing Natural Language Processing in Educational Assessment: Pages 58-73

 

This chapter describes INCITE, an NLP-based system for scoring free-text responses. It emphasizes the importance of context and the system’s intended use and explains how each component of the system contributed to its accuracy.

Posted: | Peter Baldwin

Educational Measurement: Issues and Practice

 

This article aims to answer the question: when the assumption that examinees may apply themselves fully yet still respond incorrectly is violated, what are the consequences of using the modified model proposed by Lewis and his colleagues? 

Posted: | B. E. Clauser, M. Kane, J. C. Clauser

Journal of Educational Measurement: Volume 57, Issue 2, Pages 216-229

 

This article presents two generalizability-theory–based analyses of the proportion of the item variance that contributes to error in the cut score. For one approach, variance components are estimated on the probability (or proportion-correct) scale of the Angoff judgments, and for the other, the judgments are transferred to the theta scale of an item response theory model before estimating the variance components.

Posted: | M. J. Margolis, B. E. Clauser

Handbook of Automated Scoring

 

In this chapter we describe the historical background that led to development of the simulations and the subsequent refinement of the construct that occurred as the interface was being developed. We then describe the evolution of the automated scoring procedures from linear regression modeling to rule-based procedures.

Posted: | B.C. Leventhal, I. Grabovsky

Educational Measurement: Issues and Practice, 39: 30-36

 

This article proposes the conscious weight method and subconscious weight method to bring more objectivity to the standard setting process. To do this, these methods quantify the relative harm of the negative consequences of false positive and false negative misclassification.

Posted: | P. Baldwin, M.J. Margolis, B.E. Clauser, J. Mee, M. Winward

Educational Measurement: Issues and Practice, 39: 37-44

 

This article presents the results of an experiment in which content experts were randomly assigned to one of two response probability conditions: .67 and .80. If the standard-setting judgments collected with the bookmark procedure are internally consistent, both conditions should produce highly similar cut scores.