
RESEARCH LIBRARY
RESEARCH LIBRARY
View the latest publications from members of the NBME research team
Applied Measurement Education: Volume 36, Issue 4, Pages 326-339
This study examines strategies for detecting parameter drift in small-sample equating, crucial for maintaining score comparability in high-stakes exams. Results suggest that methods like mINFIT, mOUTFIT, and Robust-z effectively mitigate drifting anchor items' effects, while caution is advised with the Logit Difference approach. Recommendations are provided for practitioners to manage item parameter drift in small-sample settings.
Educational Measurement: Issues and Practice
This article aims to answer the question: when the assumption that examinees may apply themselves fully yet still respond incorrectly is violated, what are the consequences of using the modified model proposed by Lewis and his colleagues?
Journal of Educational Measurement: Volume 57, Issue 2, Pages 216-229
This article presents two generalizability-theory–based analyses of the proportion of the item variance that contributes to error in the cut score. For one approach, variance components are estimated on the probability (or proportion-correct) scale of the Angoff judgments, and for the other, the judgments are transferred to the theta scale of an item response theory model before estimating the variance components.
Educational Measurement: Issues and Practice, 39: 30-36
This article proposes the conscious weight method and subconscious weight method to bring more objectivity to the standard setting process. To do this, these methods quantify the relative harm of the negative consequences of false positive and false negative misclassification.
Educational Measurement: Issues and Practice, 39: 37-44
This article presents the results of an experiment in which content experts were randomly assigned to one of two response probability conditions: .67 and .80. If the standard-setting judgments collected with the bookmark procedure are internally consistent, both conditions should produce highly similar cut scores.