Showing 1 - 4 of 4 Research Library Publications
Posted: | Daniel P. Jurich, Matthew J. Madison

Educational Assessment

 

This study proposes four indices to quantify item influence and distinguishes them from other available item and test measures. We use simulation methods to evaluate and provide guidelines for interpreting each index, followed by a real data application to illustrate their use in practice. We discuss theoretical considerations regarding when influence presents a psychometric concern and other practical concerns such as how the indices function when reducing influence imbalance.

Posted: | Victoria Yaneva, Peter Baldwin, Le An Ha, Christopher Runyon

Advancing Natural Language Processing in Educational Assessment: Pages 167-182

 

This chapter discusses the evolution of natural language processing (NLP) approaches to text representation and how different ways of representing text can be utilized for a relatively understudied task in educational assessment – that of predicting item characteristics from item text.

Posted: | Polina Harik, Janet Mee, Christopher Runyon, Brian E. Clauser

Advancing Natural Language Processing in Educational Assessment: Pages 58-73

 

This chapter describes INCITE, an NLP-based system for scoring free-text responses. It emphasizes the importance of context and the system’s intended use and explains how each component of the system contributed to its accuracy.

Posted: | F.S. McDonald, D. Jurich, L.M. Duhigg, M. Paniagua, D. Chick, M. Wells, A. Williams, P. Alguire

Academic Medicine: September 2020 - Volume 95 - Issue 9 - p 1388-1395

 

This article aims to assess the correlations between United States Medical Licensing Examination (USMLE) performance, American College of Physicians Internal Medicine In-Training Examination (IM-ITE) performance, American Board of Internal Medicine Internal Medicine Certification Exam (IM-CE) performance, and other medical knowledge and demographic variables.