
RESEARCH LIBRARY
RESEARCH LIBRARY
View the latest publications from members of the NBME research team
Proceedings of the 18th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2023), Pages 443-447
This paper presents the ACTA system, which performs automated short-answer grading in the domain of high-stakes medical exams. The system builds upon previous work on neural similarity-based grading approaches by applying these to the medical domain and utilizing contrastive learning as a means to optimize the similarity metric.
Advancing Natural Language Processing in Educational Assessment: Pages 167-182
This chapter discusses the evolution of natural language processing (NLP) approaches to text representation and how different ways of representing text can be utilized for a relatively understudied task in educational assessment – that of predicting item characteristics from item text.
Advancing Natural Language Processing in Educational Assessment: Pages 58-73
This chapter describes INCITE, an NLP-based system for scoring free-text responses. It emphasizes the importance of context and the system’s intended use and explains how each component of the system contributed to its accuracy.
Journal of Educational Measurement: Volume 58, Issue 4, Pages 515-537
In this paper, the NBME team reports the results an eye-tracking study designed to evaluate how the presence of the options in multiple-choice questions impacts the way medical students responded to questions designed to evaluate clinical reasoning. Examples of the types of data that can be extracted are presented. We then discuss the implications of these results for evaluating the validity of inferences made based on the type of items used in this study.
Educational Measurement: Issues and Practice
This short, invited manuscript focuses on the implications for certification and licensure assessment organizations as a result of the wide‐spread disruptions caused by the COVID-19 pandemic.
Handbook of Automated Scoring
In this chapter we describe the historical background that led to development of the simulations and the subsequent refinement of the construct that occurred as the interface was being developed. We then describe the evolution of the automated scoring procedures from linear regression modeling to rule-based procedures.
Educational Measurement: Issues and Practice, 39: 37-44
This article presents the results of an experiment in which content experts were randomly assigned to one of two response probability conditions: .67 and .80. If the standard-setting judgments collected with the bookmark procedure are internally consistent, both conditions should produce highly similar cut scores.