
RESEARCH LIBRARY
RESEARCH LIBRARY
View the latest publications from members of the NBME research team
Behavior & Information Technology
This study builds upon prior work in this area that focused on developing a machine-learning classifier trained on gaze data from web-related tasks to detect ASD in adults. Using the same data, we show that a new data pre-processing approach, combined with an exploration of the performance of different classification algorithms, leads to an increased classification accuracy compared to prior work.
Advances in Health Sciences Education: Volume 27, p 1401–1422
After collecting eye-tracking data from 26 students responding to clinical MCQs, analysis is performed by providing 119 eye-tracking features as input for a machine-learning model aiming to classify correct and incorrect responses. The predictive power of various combinations of features within the model is evaluated to understand how different feature interactions contribute to the predictions.
Journal of Educational Measurement: Volume 58, Issue 4, Pages 515-537
In this paper, the NBME team reports the results an eye-tracking study designed to evaluate how the presence of the options in multiple-choice questions impacts the way medical students responded to questions designed to evaluate clinical reasoning. Examples of the types of data that can be extracted are presented. We then discuss the implications of these results for evaluating the validity of inferences made based on the type of items used in this study.
ACM SIGACCESS Accessibility and Computing
In this article, we first summarise STA (Scanpath Trend Analysis) with its application in autism detection, and then discuss future directions for this research.
Educational Measurement: Issues and Practice
This short, invited manuscript focuses on the implications for certification and licensure assessment organizations as a result of the wide‐spread disruptions caused by the COVID-19 pandemic.
IEEE Transactions on Neural Systems and Rehabilitation Engineering
The purpose of this study is to test whether visual processing differences between adults with and without high-functioning autism captured through eye tracking can be used to detect autism.
Educational Measurement: Issues and Practice, 39: 37-44
This article presents the results of an experiment in which content experts were randomly assigned to one of two response probability conditions: .67 and .80. If the standard-setting judgments collected with the bookmark procedure are internally consistent, both conditions should produce highly similar cut scores.