Showing 1 - 5 of 5 Research Library Publications
Posted: | Erfan Khalaji, Sukru Eraslan, Yeliz Yesilada, Victoria Yaneva

Behavior & Information Technology

 

This study builds upon prior work in this area that focused on developing a machine-learning classifier trained on gaze data from web-related tasks to detect ASD in adults. Using the same data, we show that a new data pre-processing approach, combined with an exploration of the performance of different classification algorithms, leads to an increased classification accuracy compared to prior work.

Posted: | Thai Q. Ong, Dena A. Pastor

Applied Psychological Measurement: Volume 46, issue 2, page(s) 571-588

 

This study evaluates the degree to which position effects on two separate low-stakes tests administered to two different samples were moderated by different item (item length, number of response options, mental taxation, and graphic) and examinee (effort, change in effort, and gender) variables. Items exhibited significant negative linear position effects on both tests, with the magnitude of the position effects varying from item to item.

Posted: | Victoria Yaneva, Brian E. Clauser, Amy Morales, Miguel Paniagua

Advances in Health Sciences Education: Volume 27, p 1401–1422

 

After collecting eye-tracking data from 26 students responding to clinical MCQs, analysis is performed by providing 119 eye-tracking features as input for a machine-learning model aiming to classify correct and incorrect responses. The predictive power of various combinations of features within the model is evaluated to understand how different feature interactions contribute to the predictions.

Posted: | Sukru Eraslan, Yeliz Yesilada, Victoria Yaneva, Simon Harper

ACM SIGACCESS Accessibility and Computing

 

In this article, we first summarise STA (Scanpath Trend Analysis) with its application in autism detection, and then discuss future directions for this research.

Posted: | V. Yaneva, L. A. Ha, S. Eraslan, Y. Yesilada, R. Mitkov

IEEE Transactions on Neural Systems and Rehabilitation Engineering

 

The purpose of this study is to test whether visual processing differences between adults with and without high-functioning autism captured through eye tracking can be used to detect autism.