Showing 1 - 2 of 2 Research Library Publications
Posted: | Daniel Jurich, Chunyan Liu

Applied Measurement Education: Volume 36, Issue 4, Pages 326-339

 

This study examines strategies for detecting parameter drift in small-sample equating, crucial for maintaining score comparability in high-stakes exams. Results suggest that methods like mINFIT, mOUTFIT, and Robust-z effectively mitigate drifting anchor items' effects, while caution is advised with the Logit Difference approach. Recommendations are provided for practitioners to manage item parameter drift in small-sample settings.
 

Posted: | Victoria Yaneva, Le An Ha, Sukru Eraslan, Yeliz Yesilada, Ruslan Mitkov

Neural Engineering Techniques for Autism Spectrum Disorder: Volume 2, Pages 63-79

 

Automated detection of high-functioning autism in adults is a highly challenging and understudied problem. In search of a way to automatically detect the condition, this chapter explores how eye-tracking data from reading tasks can be used.