Showing 1 - 4 of 4 Research Library Publications
Posted: | Christopher Runyon, Polina Harik, Michael Barone

Diagnosis: Volume 10, Issue 1, Pages 54-60

 

This op-ed discusses the advantages of leveraging natural language processing (NLP) in the assessment of clinical reasoning. It also provides an overview of INCITE, the Intelligent Clinical Text Evaluator, a scalable NLP-based computer-assisted scoring system that was developed to measure clinical reasoning ability as assessed in the written documentation portion of the now-discontinued USMLE Step 2 Clinical Skills examination. 

Posted: | Victoria Yaneva, Janet Mee, Le Ha, Polina Harik, Michael Jodoin, Alex Mechaber

Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies - p 2880–2886

 

This paper presents a corpus of 43,985 clinical patient notes (PNs) written by 35,156 examinees during the high-stakes USMLE® Step 2 Clinical Skills examination.

Posted: | Daniel Jurich, Michelle Daniel, Karen E. Hauer, Christine Seibert, Latha Chandran, Arnyce R. Pock, Sara B. Fazio, Amy Fleming, Sally A. Santen

Teaching and Learning in Medicine: Volume 33 - Issue 4 - p 366-381

 

CSE scores for students from eight schools that moved Step 1 after core clerkships between 2012 and 2016 were analyzed in a pre-post format. Hierarchical linear modeling was used to quantify the effect of the curriculum on CSE performance. Additional analysis determined if clerkship order impacted clinical subject exam performance and whether the curriculum change resulted in more students scoring in the lowest percentiles before and after the curricular change.

Posted: | J. Salt, P. Harik, M. A. Barone

Academic Medicine: March 2019 - Volume 94 - Issue 3 - p 314-316

 

The United States Medical Licensing Examination Step 2 Clinical Skills (CS) exam uses physician raters to evaluate patient notes written by examinees. In this Invited Commentary, the authors describe the ways in which the Step 2 CS exam could benefit from adopting a computer-assisted scoring approach that combines physician raters’ judgments with computer-generated scores based on natural language processing (NLP).