
RESEARCH LIBRARY
RESEARCH LIBRARY
View the latest publications from members of the NBME research team
Advancing Natural Language Processing in Educational Assessment: Pages 167-182
This chapter discusses the evolution of natural language processing (NLP) approaches to text representation and how different ways of representing text can be utilized for a relatively understudied task in educational assessment – that of predicting item characteristics from item text.
Advancing Natural Language Processing in Educational Assessment: Pages 58-73
This chapter describes INCITE, an NLP-based system for scoring free-text responses. It emphasizes the importance of context and the system’s intended use and explains how each component of the system contributed to its accuracy.
Teaching and Learning in Medicine: Volume 33 - Issue 4 - p 366-381
CSE scores for students from eight schools that moved Step 1 after core clerkships between 2012 and 2016 were analyzed in a pre-post format. Hierarchical linear modeling was used to quantify the effect of the curriculum on CSE performance. Additional analysis determined if clerkship order impacted clinical subject exam performance and whether the curriculum change resulted in more students scoring in the lowest percentiles before and after the curricular change.
American Journal of Obstetrics and Gynecology, Volume 223, Issue 3, Pages 435.e1-435.e6
The purpose of this study was to examine medical student reporting of electronic health record use during the obstetrics and gynecology clerkship.
Journal of Educational Measurement: Volume 57, Issue 2, Pages 216-229
This article presents two generalizability-theory–based analyses of the proportion of the item variance that contributes to error in the cut score. For one approach, variance components are estimated on the probability (or proportion-correct) scale of the Angoff judgments, and for the other, the judgments are transferred to the theta scale of an item response theory model before estimating the variance components.
Springer International Publishing; 2019
This handbook provides an overview of major developments around diagnostic classification models (DCMs) with regard to modeling, estimation, model checking, scoring, and applications. It brings together not only the current state of the art, but also the theoretical background and models developed for diagnostic classification.
On the Cover. Educational Measurement: Issues and Practice, 38: 5-5
This informative graphic reports between‐individual information where a vertical line—with dashed lines on either side indicating an error band—spans three graphics allowing a student to easily see their score relative to four defined performance categories and, more notably, three relevant score distributions.
J Gen Intern Med 34, 705–711 (2019)
This study examines medical student accounts of EHR use during their internal medicine (IM) clerkships and sub-internships during a 5-year time period prior to the new clinical documentation guidelines.
Academic Medicine: March 2019 - Volume 94 - Issue 3 - p 371-377
Schools undergoing curricular reform are reconsidering the optimal timing of Step 1. This study provides a psychometric investigation of the impact on United States Medical Licensing Examination Step 1 scores of changing the timing of Step 1 from after completion of the basic science curricula to after core clerkships.
Academic Medicine: March 2019 - Volume 94 - Issue 3 - p 314-316
The United States Medical Licensing Examination Step 2 Clinical Skills (CS) exam uses physician raters to evaluate patient notes written by examinees. In this Invited Commentary, the authors describe the ways in which the Step 2 CS exam could benefit from adopting a computer-assisted scoring approach that combines physician raters’ judgments with computer-generated scores based on natural language processing (NLP).