Showing 1 - 10 of 16 Research Library Publications
Posted: | Victoria Yaneva, Peter Baldwin, Le An Ha, Christopher Runyon

Advancing Natural Language Processing in Educational Assessment: Pages 167-182

 

This chapter discusses the evolution of natural language processing (NLP) approaches to text representation and how different ways of representing text can be utilized for a relatively understudied task in educational assessment – that of predicting item characteristics from item text.

Posted: | Polina Harik, Janet Mee, Christopher Runyon, Brian E. Clauser

Advancing Natural Language Processing in Educational Assessment: Pages 58-73

 

This chapter describes INCITE, an NLP-based system for scoring free-text responses. It emphasizes the importance of context and the system’s intended use and explains how each component of the system contributed to its accuracy.

Posted: | Peter Baldwin

Educational Measurement: Issues and Practice

 

This article aims to answer the question: when the assumption that examinees may apply themselves fully yet still respond incorrectly is violated, what are the consequences of using the modified model proposed by Lewis and his colleagues? 

Posted: | B. E. Clauser, M. Kane, J. C. Clauser

Journal of Educational Measurement: Volume 57, Issue 2, Pages 216-229

 

This article presents two generalizability-theory–based analyses of the proportion of the item variance that contributes to error in the cut score. For one approach, variance components are estimated on the probability (or proportion-correct) scale of the Angoff judgments, and for the other, the judgments are transferred to the theta scale of an item response theory model before estimating the variance components.

Posted: | B.C. Leventhal, I. Grabovsky

Educational Measurement: Issues and Practice, 39: 30-36

 

This article proposes the conscious weight method and subconscious weight method to bring more objectivity to the standard setting process. To do this, these methods quantify the relative harm of the negative consequences of false positive and false negative misclassification.

Posted: | M. von Davier, YS. Lee

Springer International Publishing; 2019

 

This handbook provides an overview of major developments around diagnostic classification models (DCMs) with regard to modeling, estimation, model checking, scoring, and applications. It brings together not only the current state of the art, but also the theoretical background and models developed for diagnostic classification.

Posted: | R.A. Feinberg, D.P Jurich

On the Cover. Educational Measurement: Issues and Practice, 38: 5-5

 

This informative graphic reports between‐individual information where a vertical line—with dashed lines on either side indicating an error band—spans three graphics allowing a student to easily see their score relative to four defined performance categories and, more notably, three relevant score distributions.

Posted: | D. Jurich, M. Daniel, M. Paniagua, A. Fleming, V. Harnik, A. Pock, A. Swan-Sein, M. A. Barone, S.A. Santen

Academic Medicine: March 2019 - Volume 94 - Issue 3 - p 371-377

 

Schools undergoing curricular reform are reconsidering the optimal timing of Step 1. This study provides a psychometric investigation of the impact on United States Medical Licensing Examination Step 1 scores of changing the timing of Step 1 from after completion of the basic science curricula to after core clerkships.

Posted: | J. Salt, P. Harik, M. A. Barone

Academic Medicine: March 2019 - Volume 94 - Issue 3 - p 314-316

 

The United States Medical Licensing Examination Step 2 Clinical Skills (CS) exam uses physician raters to evaluate patient notes written by examinees. In this Invited Commentary, the authors describe the ways in which the Step 2 CS exam could benefit from adopting a computer-assisted scoring approach that combines physician raters’ judgments with computer-generated scores based on natural language processing (NLP).

Posted: | P. Baldwin, M.J. Margolis, B.E. Clauser, J. Mee, M. Winward

Educational Measurement: Issues and Practice, 39: 37-44

 

This article presents the results of an experiment in which content experts were randomly assigned to one of two response probability conditions: .67 and .80. If the standard-setting judgments collected with the bookmark procedure are internally consistent, both conditions should produce highly similar cut scores.