Showing 1 - 10 of 16 Research Library Publications
Posted: | Victoria Yaneva (editor), Matthias von Davier (editor)

Advancing Natural Language Processing in Educational Assessment

 

This book examines the use of natural language technology in educational testing, measurement, and assessment. Recent developments in natural language processing (NLP) have enabled large-scale educational applications, though scholars and professionals may lack a shared understanding of the strengths and limitations of NLP in assessment as well as the challenges that testing organizations face in implementation. This first-of-its-kind book provides evidence-based practices for the use of NLP-based approaches to automated text and speech scoring, language proficiency assessment, technology-assisted item generation, gamification, learner feedback, and beyond.

Posted: | Victoria Yaneva, Peter Baldwin, Le An Ha, Christopher Runyon

Advancing Natural Language Processing in Educational Assessment: Pages 167-182

 

This chapter discusses the evolution of natural language processing (NLP) approaches to text representation and how different ways of representing text can be utilized for a relatively understudied task in educational assessment – that of predicting item characteristics from item text.

Posted: | Polina Harik, Janet Mee, Christopher Runyon, Brian E. Clauser

Advancing Natural Language Processing in Educational Assessment: Pages 58-73

 

This chapter describes INCITE, an NLP-based system for scoring free-text responses. It emphasizes the importance of context and the system’s intended use and explains how each component of the system contributed to its accuracy.

Posted: | Martin G. Tolsgaard, Martin V. Pusic, Stefanie S. Sebok-Syer, Brian Gin, Morten Bo Svendsen, Mark D. Syer, Ryan Brydges, Monica M. Cuddy, Christy K. Boscardin

Medical Teacher: Volume 45 - Issue 6, Pages 565-573

 

This guide aims aim to describe practical considerations involved in reading and conducting studies in medical education using Artificial Intelligence (AI), define basic terminology and identify which medical education problems and data are ideally-suited for using AI.

Posted: | Ian Micir, Kimberly Swygert, Jean D'Angelo

Journal of Applied Technology: Volume 23 - Special Issue 1 - Pages 30-40

 

The interpretations of test scores in secure, high-stakes environments are dependent on several assumptions, one of which is that examinee responses to items are independent and no enemy items are included on the same forms. This paper documents the development and implementation of a C#-based application that uses Natural Language Processing (NLP) and Machine Learning (ML) techniques to produce prioritized predictions of item enemy statuses within a large item bank.

Posted: | Martin G. Tolsgaard, Christy K. Boscardin, Yoon Soo Park, Monica M. Cuddy, Stefanie S. Sebok-Syer

Advances in Health Sciences Education: Volume 25, p 1057–1086 (2020)

 

This critical review explores: (1) published applications of data science and ML in HPE literature and (2) the potential role of data science and ML in shifting theoretical and epistemological perspectives in HPE research and practice.

Posted: | B. E. Clauser, M. Kane, J. C. Clauser

Journal of Educational Measurement: Volume 57, Issue 2, Pages 216-229

 

This article presents two generalizability-theory–based analyses of the proportion of the item variance that contributes to error in the cut score. For one approach, variance components are estimated on the probability (or proportion-correct) scale of the Angoff judgments, and for the other, the judgments are transferred to the theta scale of an item response theory model before estimating the variance components.

Posted: | M. von Davier, YS. Lee

Springer International Publishing; 2019

 

This handbook provides an overview of major developments around diagnostic classification models (DCMs) with regard to modeling, estimation, model checking, scoring, and applications. It brings together not only the current state of the art, but also the theoretical background and models developed for diagnostic classification.

Posted: | R.A. Feinberg, D.P Jurich

On the Cover. Educational Measurement: Issues and Practice, 38: 5-5

 

This informative graphic reports between‐individual information where a vertical line—with dashed lines on either side indicating an error band—spans three graphics allowing a student to easily see their score relative to four defined performance categories and, more notably, three relevant score distributions.

Posted: | J. Salt, P. Harik, M. A. Barone

Academic Medicine: March 2019 - Volume 94 - Issue 3 - p 314-316

 

The United States Medical Licensing Examination Step 2 Clinical Skills (CS) exam uses physician raters to evaluate patient notes written by examinees. In this Invited Commentary, the authors describe the ways in which the Step 2 CS exam could benefit from adopting a computer-assisted scoring approach that combines physician raters’ judgments with computer-generated scores based on natural language processing (NLP).