Showing 1 - 3 of 3 Research Library Publications
Posted: | King Yiu Suen, Victoria Yaneva, Le An Ha, Janet Mee, Yiyun Zhou, Polina Harik

Proceedings of the 18th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2023), Pages 443-447

 

This paper presents the ACTA system, which performs automated short-answer grading in the domain of high-stakes medical exams. The system builds upon previous work on neural similarity-based grading approaches by applying these to the medical domain and utilizing contrastive learning as a means to optimize the similarity metric. 

Posted: | M. von Davier, YS. Lee

Springer International Publishing; 2019

 

This handbook provides an overview of major developments around diagnostic classification models (DCMs) with regard to modeling, estimation, model checking, scoring, and applications. It brings together not only the current state of the art, but also the theoretical background and models developed for diagnostic classification.

Posted: | D. Franzen, M. Cuddy, J. S. Ilgen

Journal of Graduate Medical Education: June 2018, Vol. 10, No. 3, pp. 337-338

 

To create examinations with scores that accurately support their intended interpretation and use in a particular setting, examination writers must clearly define what the test is intended to measure (the construct). Writers must also pay careful attention to how content is sampled, how questions are constructed, and how questions perform in their unique testing contexts.1–3 This Rip Out provides guidance for test developers to ensure that scores from MCQ examinations fit their intended purpose.