
RESEARCH LIBRARY
RESEARCH LIBRARY
View the latest publications from members of the NBME research team
Springer International Publishing; 2019
This handbook provides an overview of major developments around diagnostic classification models (DCMs) with regard to modeling, estimation, model checking, scoring, and applications. It brings together not only the current state of the art, but also the theoretical background and models developed for diagnostic classification.
Academic Medicine: March 2019 - Volume 94 - Issue 3 - p 371-377
Schools undergoing curricular reform are reconsidering the optimal timing of Step 1. This study provides a psychometric investigation of the impact on United States Medical Licensing Examination Step 1 scores of changing the timing of Step 1 from after completion of the basic science curricula to after core clerkships.
Academic Medicine: March 2019 - Volume 94 - Issue 3 - p 314-316
The United States Medical Licensing Examination Step 2 Clinical Skills (CS) exam uses physician raters to evaluate patient notes written by examinees. In this Invited Commentary, the authors describe the ways in which the Step 2 CS exam could benefit from adopting a computer-assisted scoring approach that combines physician raters’ judgments with computer-generated scores based on natural language processing (NLP).
Journal of Graduate Medical Education: June 2018, Vol. 10, No. 3, pp. 337-338
To create examinations with scores that accurately support their intended interpretation and use in a particular setting, examination writers must clearly define what the test is intended to measure (the construct). Writers must also pay careful attention to how content is sampled, how questions are constructed, and how questions perform in their unique testing contexts.1–3 This Rip Out provides guidance for test developers to ensure that scores from MCQ examinations fit their intended purpose.
Journal of Educational Measurement: Volume 55, Issue 2, Pages 308-327
The widespread move to computerized test delivery has led to the development of new approaches to evaluating how examinees use testing time and to new metrics designed to provide evidence about the extent to which time limits impact performance. Much of the existing research is based on these types of observational metrics; relatively few studies use randomized experiments to evaluate the impact time limits on scores. Of those studies that do report on randomized experiments, none directly compare the experimental results to evidence from observational metrics to evaluate the extent to which these metrics are able to sensitively identify conditions in which time constraints actually impact scores. The present study provides such evidence based on data from a medical licensing examination.