Showing 1 - 2 of 2 Research Library Publications
Posted: | Ian Micir, Kimberly Swygert, Jean D'Angelo

Journal of Applied Technology: Volume 23 - Special Issue 1 - Pages 30-40

 

The interpretations of test scores in secure, high-stakes environments are dependent on several assumptions, one of which is that examinee responses to items are independent and no enemy items are included on the same forms. This paper documents the development and implementation of a C#-based application that uses Natural Language Processing (NLP) and Machine Learning (ML) techniques to produce prioritized predictions of item enemy statuses within a large item bank.

Posted: | M. von Davier, Y. Cho, T. Pan

Psychometrika 84, 147–163 (2019)

 

This paper provides results on a form of adaptive testing that is used frequently in intelligence testing. In these tests, items are presented in order of increasing difficulty. The presentation of items is adaptive in the sense that a session is discontinued once a test taker produces a certain number of incorrect responses in sequence, with subsequent (not observed) responses commonly scored as wrong.