Showing 1 - 10 of 15 Research Library Publications
Posted: | John Norcini, Irina Grabovsky, Michael A. Barone, M. Brownell Anderson, Ravi S. Pandian, Alex J. Mechaber

Academic Medicine: Volume 99 - Issue 3 - p 325-330

 

This retrospective cohort study investigates the association between United States Medical Licensing Examination (USMLE) scores and outcomes in 196,881 hospitalizations in Pennsylvania over 3 years.

Posted: | Victoria Yaneva, Peter Baldwin, Daniel P. Jurich, Kimberly Swygert, Brian E. Clauser

Academic Medicine: Volume 99 - Issue 2 - p 192-197

 

This report investigates the potential of artificial intelligence (AI) agents, exemplified by ChatGPT, to perform on the United States Medical Licensing Examination (USMLE), following reports of its successful performance on sample items. 

Posted: | Victoria Yaneva (editor), Matthias von Davier (editor)

Advancing Natural Language Processing in Educational Assessment

 

This book examines the use of natural language technology in educational testing, measurement, and assessment. Recent developments in natural language processing (NLP) have enabled large-scale educational applications, though scholars and professionals may lack a shared understanding of the strengths and limitations of NLP in assessment as well as the challenges that testing organizations face in implementation. This first-of-its-kind book provides evidence-based practices for the use of NLP-based approaches to automated text and speech scoring, language proficiency assessment, technology-assisted item generation, gamification, learner feedback, and beyond.

Posted: | Martin G. Tolsgaard, Martin V. Pusic, Stefanie S. Sebok-Syer, Brian Gin, Morten Bo Svendsen, Mark D. Syer, Ryan Brydges, Monica M. Cuddy, Christy K. Boscardin

Medical Teacher: Volume 45 - Issue 6, Pages 565-573

 

This guide aims aim to describe practical considerations involved in reading and conducting studies in medical education using Artificial Intelligence (AI), define basic terminology and identify which medical education problems and data are ideally-suited for using AI.

Posted: | Hanin Rashid, Christopher Runyon, Jesse Burk-Rafel, Monica M. Cuddy, Liselotte Dyrbye, Katie Arnhart, Ulana Luciw-Dubas, Hilit F. Mechaber, Steve Lieberman, Miguel Paniagua

Academic Medicine: Volume 97 - Issue 11S - Page S176

 

As Step 1 begins to transition to pass/fail, it is interesting to consider the impact of score goal on wellness. This study examines the relationship between goal score, gender, and students’ self-reported anxiety, stress, and overall distress immediately following their completion of Step 1.

Posted: | Monica M. Cuddy, Chunyan Liu, Wenli Ouyang, Michael A. Barone, Aaron Young, David A. Johnson

Academic Medicine: June 2022

 

This study examines the associations between Step 3 scores and subsequent receipt of disciplinary action taken by state medical boards for problematic behavior in practice. It analyzes Step 3 total, Step 3 computer-based case simulation (CCS), and Step 3multiple-choice question (MCQ) scores.

Posted: | Daniel Jurich, Chunyan Liu, Amanda Clauser

Journal of Graduate Medical Education: Volume 14, Issue 3, Pages 353-354

 

Letter to the editor.

Posted: | Ian Micir, Kimberly Swygert, Jean D'Angelo

Journal of Applied Technology: Volume 23 - Special Issue 1 - Pages 30-40

 

The interpretations of test scores in secure, high-stakes environments are dependent on several assumptions, one of which is that examinee responses to items are independent and no enemy items are included on the same forms. This paper documents the development and implementation of a C#-based application that uses Natural Language Processing (NLP) and Machine Learning (ML) techniques to produce prioritized predictions of item enemy statuses within a large item bank.

Posted: | Stanley J. Hamstra, Monica M. Cuddy, Daniel Jurich, Kenji Yamazaki, John Burkhardt, Eric S. Holmboe, Michael A. Barone, Sally A. Santen

Academic Medicine: Volume 96 - Issue 9 - Pages 1324-1331

 

This study examines associations between USMLE Step 1 and Step 2 Clinical Knowledge (CK) scores and ACGME emergency medicine (EM) milestone ratings.

Posted: | Katie L. Arnhart, Monica M. Cuddy, David Johnson, Michael A. Barone, Aaron Young

Academic Medicine: Volume 96 - Issue 9 - Pages 1319-1323

 

This study examined the relationship between USMLE attempts and the likelihood of receiving disciplinary actions from state medical boards.